List of publications

1.     Thermal noise-limited beam balance as prototype of the Archimedes vacuum weight experiment and B-L dark photon search Allocca, A., Avino, S., Calloni, E., … Tafuri, F., Trozzo, L. European Physical Journal Plus, 2024, 139(2), 158

2.     Zeptosecond-Scale Single-Photon Gyroscope Sgobba, F., Triggiani, D., Tamma, V., … Avino, S., Santamaria Amato, L. Advanced Quantum Technologies, 2024

3.     Solid and liquid whispering-gallery mode microresonators excited via Lorenz-Mie scattering and their applications D’Ambrosio, D., Capezzuto, M., Avino, S., … Malara, P., Gagliardi, G. Proceedings of SPIE – The International Society for Optical Engineering, 2024, 12871, 1287106

4.     S. Castrignano, M.G. delli Santi, M.L. Capezzuto, M. Consales, P. Vaiano, A. Cusano, G. Gagliardi, P. Malara, “All-fiber multiparametric Near-Infrared spectroscopy of liquids”, Sensors 24, 729 (2024)

5.     Marialuisa Capezzuto, Davide D’Ambrosio, Antonio Giorgini, Pietro Malara, Saverio Avino, and Gianluca Gagliardi, “All-fiber high-resolution incoherent broadband spectrometer,” Opt. Express 32, 5353-5361 (2024)

6.     Marialuisa Capezzuto, Guido Gaudiosi, Lucia Nardone, Ezio D’Alema, Davide D’Ambrosio, Roberto Manzo, Antonio Giorgini, Pietro Malara, Paolo De Natale, Gianluca Gagliardi, Luigi Santamaria Amato, Danilo Galluzzo, and Saverio Avino “Fiber-optic gyroscope for rotational seismic ground motion monitoring of the Campi Flegrei volcanic area”, Appl. Opt., https://doi.org/10.1364/AO.518354

7.     D’Ambrosio et al. Automatic Alignment Method for Controlled Free-Space Excitation of Whispering-Gallery Resonances. Sensors, 23(21), 9007; https://doi.org/10.3390/s23219007 (2023)

8.     D’Ambrosio, et al, Infrared-to-THz Detection and Spectroscopy with Whispering-Gallery-Mode Microresonators. Adv. Photonics Res., 3: 2200147. https://doi.org/10.1002/adpr.202200147 (2022)

9.     Nanoparticles sensing and imaging with free-space excited whispering gallery mode microresonators. D’Ambrosio, D., Capezzuto, M., Giorgini, A., …Castrignano, S., Gagliardi, G. Proceedings of SPIE – The International Society for Optical Engineering, (2022), 12139, 121390D

10. Capezzuto, M. et al. Ultra-broadband high-resolution microdroplet spectrometers for the near infrared. Opt. Lett. 47, 102 (2022).

11. Casimir energy for N superconducting cavities: a model for the YBCO (GdBCO) sample to be used in the Archimedes experiment. Allocca, A., Avino, S., Balestrieri, S., …Tosta e Melo, I., Trozzo, L. European Physical Journal Plus, (2022), 137(7), 826

12. Quantum zero point electromagnetic energy difference between the superconducting and the normal phase in a high- Tc superconducting metal bulk sample. Allocca, A., Avino, S., Balestrieri, S., …Tosta E Melo, I., Trozzo, L. Physical Review B, (2022), 106(13), 134502

13. D’Ambrosio, D. et al. Angular-momentum coupling of optical whispering-gallery modes to liquid droplet microresonators. Phys. Rev. A 104, 043504 (2021).

14. Allocca, A. et al. Picoradiant tiltmeter and direct ground tilt measurements at the Sos Enattos site. Eur. Phys. J. Plus 136, 1069 (2021).

15. D’Ambrosio, D. et al. Light pressure in droplet micro-resonators excited by free-space scattering. Opt. Lett. 46, 3111 (2021).

16. Zambrana‐Puyalto, X., D’Ambrosio, D. & Gagliardi, G. Excitation Mechanisms of Whispering Gallery Modes with Direct Light Scattering. Laser & Photonics Reviews 15, 2000528 (2021).

17. Archimedes Collaboration, Virgo Collaboration & Calloni, E. High-bandwidth beam balance for vacuum-weight experiment and Newtonian noise subtraction. Eur. Phys. J. Plus 136, 335 (2021).

18. Malara, P. et al. A self-operating broadband spectrometer on a droplet. Nat. Commun. 11, 2263 (2020).

19. Avino, S. et al. Progress in a Vacuum Weight Search Experiment. Physics 2, 1–13 (2019).

20. Aronne, G. & Malara, P. Fiber‐optic refractometer for in vivo sugar concentration measurements of low‐nectar‐producing flowers. New Phytol 224, 987–993 (2019).

21. Anastasi, A. et al. The monitoring electronics of the laser calibration system in the Muon g-2 experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 936 , 372–373 (2019).

22. Anastasi, A. et al. Muon g-2 calibration system data flow. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 936 , 335–336 (2019).

23. Giorgini, A., Avino, S., Malara, P., De Natale, P. & Gagliardi, G. Liquid droplet microresonators. Sensors 19, 473 (2019).

24. Malara, P. et al. Resonant enhancement of plasmonic nanostructured fiber optic sensors. Sensors and Actuators B: Chemical 273, 1587–1592 (2018).

25. Giorgini, A. et al. Surface-plasmon optical-heterodyne clock biosensor. Sensors and Actuators B: Chemical 273, 336–341 (2018).

26. Anastasi, A. et al. The laser control of the muon g −2 experiment at Fermilab. J. Inst. 13, T02009–T02009 (2018).

27. Giorgini, A. et al. Stimulated brillouin cavity optomechanics in liquid droplets. Phys. Rev. Lett. 120, 073902 (2018).

28. Giorgini, A., Avino, S., Malara, P., De Natale, P. & Gagliardi, G. Opto-mechanical oscillator in a nanoliter droplet. Opt. Lett. 43, 3473 (2018).

29. Rosa, L. et al. Casimir energy for two and three superconducting coupled cavities: Numerical calculations. Eur. Phys. J. Plus 132, 478 (2017).

30. Malara, P. et al. Rheology of complex fluids with vibrating fiber-optic sensors. Sensors and Actuators A: Physical 264, 219–223 (2017).

31. Giorgini, A., Avino, S., Malara, P., De Natale, P. & Gagliardi, G. Fundamental limits in high-$Q$ droplet microresonators. Sci. Rep. 7, 41997 (2017).

32. Marignetti, F. et al. Fiber Bragg Grating Sensor for Electric Field Measurement in the End Windings of High-Voltage Electric Machines. IEEE Trans. Ind. Electron. 63, 2796–2802 (2016).

33. Zullo, R. et al. Laser-frequency locking to a whispering-gallery-mode cavity by spatial interference of scattered light. Opt. Lett. 41, 650 (2016).

34. Malara, P. et al. Super-resonant intracavity coherent absorption. Sci. Rep. 6, 28947 (2016).

35. Malara, P., Campanella, C. E., Giorgini, A., Avino, S. & Gagliardi, G. Fiber Bragg grating laser sensor with direct radio-frequency readout. Opt. Lett. 41, 1420 (2016).

36. Campanella, C. E. et al. Mode-splitting cloning in birefringent fiber Bragg grating ring resonators. Opt. Lett. 41, 2672 (2016).

37. Campanella, C. E. et al. Investigation of refractive index sensing based on Fano resonance in fiber Bragg grating ring resonators. Opt. Express 23, 14301 (2015).

38. Malara, P. et al. Enhanced spectral response of π-phase shifted fiber Bragg gratings in closed-loop configuration. Opt. Lett. 40, 2124 (2015).

39. Avino, S. et al. Ionizing Radiation Detectors Based on Ge-Doped Optical Fibers Inserted in Resonant Cavities. Sensors 15, 4242–4252 (2015).

40. Gangopadhyay, T. K. et al. Detection of chemicals using a novel fiber-optic sensor element built in fiber loop ring-resonators. Sens. Actuator B 206, 327 (2015).

41. Campanella, C. E. et al. Investigation of fiber Bragg grating based mode-splitting resonant sensors. Opt. Express 22, 25371 (2014).

42. Foreman, M. R. et al. Enhanced nanoparticle detection with liquid droplet resonators. Eur. Phys. J. Spec. Top. 223, 1971–1988 (2014).

43. Giorgini, A. et al. Cavity-enhanced surface-plasmon resonance sensing: modeling and performance. Meas. Sci. Technol. 25, 015205 (2014).

44. Malara, P. et al. Split-mode fiber Bragg grating sensor for high-resolution static strain measurements. Opt. Lett. 39, 6899 (2014).

45. Barnes, J. A., Gagliardi, G. & Loock, H. Absolute absorption cross-section measurement of a submonolayer film on a silica microresonator. Optica 1, 75 (2014).

46. Avino, S. et al. High-sensitivity ring-down evanescent-wave sensing in fiber resonators. Opt. Lett. 39, 5725 (2014).

47. Avino, S. et al. Direct sensing in liquids using whispering-gallery-mode droplet resonators. Adv. Opt. Mater. 2, 1155 (2014).

48. Campanella, C. E. et al. Localized strain sensing with fiber Bragg-grating ring cavities. Opt. Express 21, 29435 (2013).

49. Barnes, J. A., Gagliardi, G. & Loock, H.-P. Erratum: Phase-shift cavity ring-down spectroscopy on a microsphere resonator by Rayleigh backscattering [Phys. Rev. A 87 , 053843 (2013)]. Phys. Rev. A 88, 059905 (2013).

50. Avino, S. et al. Detecting ionizing radiation with optical fibers down to biomedical doses. Appl. Phys. Lett. 103, 184102 (2013).

51. Wójcik, A. K. et al. Generation of picosecond pulses and frequency combs in actively mode locked external ring cavity quantum cascade lasers. Appl. Phys. Lett. 103, 231102 (2013).

52. Malara, P., Witinski, M. F., Gagliardi, G. & De Natale, P. Two-tone frequency-modulation spectroscopy in off-axis cavity. Opt. Lett. 38, 4625 (2013).

53. Malara, P. et al. External ring-cavity quantum cascade lasers. Appl. Phys. Lett. 102, 141105 (2013).

54. Giorgini, A. et al. Surface plasmon resonance optical cavity enhanced refractive index sensing. Opt. Lett. 38, 1951 (2013).

55. Barnes, J. A., Gagliardi, G. & Loock, H. Phase-shift cavity ring-down spectroscopy on a microsphere resonator by Rayleigh backscattering. Phys. Rev. A 87, 053843 (2013).

56. Avino, S. et al. Evanescent-wave comb spectroscopy of liquids with strongly dispersive optical fiber cavities. Appl. Phys. Lett. 102, 201116 (2013).

57. Avino, S., Giorgini, A., Malara, P., Gagliardi, G. & De Natale, P. Investigating the resonance spectrum of optical frequency combs in fiber-optic cavities. Opt. Express 21, 13785 (2013).

58. Accadia, T. et al. Virgo: a laser interferometer to detect gravitational waves. J. Inst. 7, P03012–P03012 (2012).

59. Malara, P., Witinski, M. F., Capasso, F., Anderson, J. G. & De Natale, P. Sensitivity enhancement of off-axis ICOS using wavelength modulation. Appl. Phys. B 108, 353 (2012).

60. Gagliardi, G., Salza, M., Avino, S., Ferraro, P. & De Natale, P. Response to comment on “Probing the ultimate limit of fiber-optic strain sensing”. Science 335, 286 (2012).

61. Avino, S. et al. Musical instrument pickup based on a laser locked to an optical fiber resonator. Opt. Express 19, 25057 (2011).

62. Schmidt, M., Prevedelli, M., Giorgini, A., Tino, G. & Peters, A. A portable laser system for high-precision atom interferometry experiments. Appl. Phys. B 102, 11 (2011).

63. Cancio, P. et al. Frequency-comb-referenced mid-IR sources for next-generation environmental sensors. Appl. Phys. B 102, 255 (2011).

64. Sorrentino, F. et al. A Compact Atom Interferometer for Future Space Missions. Microgravity Sci. Technol. 22, 551–561 (2010).

65. Lam, T. T.-Y., Gagliardi, G., Salza, M., Chow, J. H. & De Natale, P. Optical fiber three-axis accelerometer based on lasers locked to π phase-shifted Bragg gratings. Meas. Sci. Technol. 21, 094010 (2010).

66. Gagliardi, G. et al. Optical Fiber Sensing Based on Reflection Laser Spectroscopy. Sensors 10, 1823–1845 (2010).

67. Maddaloni, P., Malara, P. & De Natale, P. Simulation of Dicke-narrowed molecular spectra recorded by off-axis high-finesse optical cavities. Mol. Phys. 108, 749 (2010).

68. Maddaloni, P. et al. Absolute measurement of the $S(0)$ and $S(1)$ lines in the electric quadrupole fundamental band of D₂ around 3 μm. J. Chem. Phys. 133, 154317 (2010).

69. Loock, H. et al. Absorption detection using optical waveguide cavities. Can. J. Chem. 88, 401 (2010).

70. Lam, T. T. et al. High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing. Appl. Opt. 49, 4029 (2010).

71. Gagliardi, G., Salza, M., Avino, S., Ferraro, P. & De Natale, P. Probing the ultimate limit of fiber-optic strain sensing. Science 330, 1081 (2010).